Cargando…
Robust optimization in lung treatment plans accounting for geometric uncertainty
Robust optimization generates scenario‐based plans by a minimax optimization method to find optimal scenario for the trade‐off between target coverage robustness and organ‐at‐risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs...
Autores principales: | Zhang, Xin, Rong, Yi, Morrill, Steven, Fang, Jian, Narayanasamy, Ganesh, Galhardo, Edvaldo, Maraboyina, Sanjay, Croft, Christopher, xia, Fen, Penagaricano, Jose |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978970/ https://www.ncbi.nlm.nih.gov/pubmed/29524301 http://dx.doi.org/10.1002/acm2.12291 |
Ejemplares similares
-
Helical tomotherapy to LINAC plan conversion utilizing RayStation Fallback planning
por: Zhang, Xin, et al.
Publicado: (2017) -
Radiosurgery for mesial temporal lobe epilepsy following ROSE trial guidelines — A planning comparison between Gamma Knife, Eclipse, and Brainlab
por: Narayanasamy, Ganesh, et al.
Publicado: (2019) -
A Dose Falloff Gradient Study in RapidArc Planning of Lung Stereotactic Body Radiation Therapy
por: Narayanasamy, Ganesh, et al.
Publicado: (2018) -
Robust optimization of VMAT for prostate cancer accounting for geometric uncertainty
por: Wada, Takuya, et al.
Publicado: (2022) -
Effectiveness of robust optimization against geometric uncertainties in TomoHelical planning for prostate cancer
por: Yagihashi, Takayuki, et al.
Publicado: (2022)