Cargando…
Human and environmental gradients predict catch, effort, and species composition in a large Micronesian coral-reef fishery
The consistent supply of fresh fish to commercial markets may mask growing fishing footprints and localized depletions, as fishing expands to deeper/further reefs, smaller fish, and more resilient species. To test this hypothesis, species-based records and fisher interviews were gathered over one ye...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979012/ https://www.ncbi.nlm.nih.gov/pubmed/29852023 http://dx.doi.org/10.1371/journal.pone.0198068 |
Sumario: | The consistent supply of fresh fish to commercial markets may mask growing fishing footprints and localized depletions, as fishing expands to deeper/further reefs, smaller fish, and more resilient species. To test this hypothesis, species-based records and fisher interviews were gathered over one year within a large, demand-driven coral-reef fishery in Chuuk, Micronesia. We first assessed catch statistics with respect to high windspeeds and moon phases that are known to constrain both catch and effort. While lower daily catch success was predicted by higher windspeeds and greater lunar illumination, total daily landings fluctuated less than fishing success across environmental gradients. Instead, daily landings were mainly driven by the number of flights from Chuuk to Guam (i.e., international demand). Given that demand masked local drivers of overall catch volume, we further evaluated species-based indicators of fisheries exploitation. Most target species (75%) had either a positively skewed size distribution or proportional contributions that were dependent upon favorable conditions (i.e. season and moon phases). Skewed size distributions indicated truncated growth associated with fishing mortality, and in turn, suggested that size-based management policies may be most effective for these species. In contrast, environmentally-constrained catch success indicated species that may be more susceptible to growing fishing footprints and may respond better to gear/quota/area policies compared to size policies. Species-based responses offered a simplified means to combine species into fisheries management units. Finally, a comparison of commercial and subsistence landings showed higher vulnerability to fishing among species preferentially targeted by commercial fisheries, offering new insights into how commercial harvesting can disproportionately impact resources, despite having lower annual catch volumes. |
---|