Cargando…

Cytochrome P450 CYP6EV11 in Chironomus kiiensis Larvae Involved in Phenol Stress

Phenol is one of the organic pollutants which can cause water environment pollution. It is not only enriched in aquatic organisms but is also a serious threat to human health. Chironomus kiiensis is very sensitive to the contaminants in water and its cytochrome P450s are usually chosen as biomarkers...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qihui, Chu, Dong, Sun, Lili, Cao, Chuanwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979273/
https://www.ncbi.nlm.nih.gov/pubmed/29642521
http://dx.doi.org/10.3390/ijms19041119
Descripción
Sumario:Phenol is one of the organic pollutants which can cause water environment pollution. It is not only enriched in aquatic organisms but is also a serious threat to human health. Chironomus kiiensis is very sensitive to the contaminants in water and its cytochrome P450s are usually chosen as biomarkers for water pollution. To examine whether CYP6EV11 plays a role in the oxidative metabolism of phenol, we measured the silencing efficiency of CYP6EV11 and evaluated larval susceptibility to sublethal phenol levels by RNA interference (RNAi) technology. The results showed that the transcription of CYP6EV11 was found significantly up-regulated when the 4th instar C. kiiensis larvae were exposed to three doses of phenol. However, the transcriptional levels of CYP6EV11 were significantly suppressed by 92.7% in the 4th instar C. kiiensis larvae soaked in dsCYP6EV11 compared with those soaked in dsGFP for 6 h. The CYP6EV11 expression and mortality of the 4th instar C. kiiensis larvae with CYP6EV11 silencing were mostly decreased under phenol stress. Therefore, the CYP6EV11 gene may be used as a molecular biomarker for earlier warning and monitoring for water pollution.