Cargando…

Structural Requirements of Alkylglyceryl-l-Ascorbic Acid Derivatives for Melanogenesis Inhibitory Activity

l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C–alkylglycerol...

Descripción completa

Detalles Bibliográficos
Autores principales: Taira, Norihisa, Katsuyama, Yushi, Yoshioka, Masato, Muraoka, Osamu, Morikawa, Toshio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979531/
https://www.ncbi.nlm.nih.gov/pubmed/29642633
http://dx.doi.org/10.3390/ijms19041144
Descripción
Sumario:l-Ascorbic acid has multifunctional benefits on skin aesthetics, including inhibition of melanin production, and is widely used in cosmetics. It, however, has low stability and poor skin penetration. We hypothesize that alkylglyceryl-l-ascorbic acid derivatives, highly stable vitamin C–alkylglycerol conjugates, would have similar anti-melanogenic activity with better stability and penetration. We test 28 alkylglyceryl-l-ascorbic acid derivatives (1–28) on theophylline-stimulated B16 melanoma 4A5 cells to determine if they inhibit melanogenesis and establish any structure–function relationships. Although not the most potent inhibitors, 3-O-(2,3-dihydroxypropyl)-2-O-hexyl-l-ascorbic acid (6, IC(50) = 81.4 µM) and 2-O-(2,3-dihydroxypropyl)-3-O-hexyl-l-ascorbic acid (20, IC(50) = 117 µM) are deemed the best candidate derivatives based on their inhibitory activities and low toxicities. These derivatives are also found to be more stable than l-ascorbic acid and to have favorable characteristics for skin penetration. The following structural requirements for inhibitory activity of alkylglyceryl-l-ascorbic acid derivatives are also determined: (i) alkylation of glyceryl-l-ascorbic acid is essential for inhibitory activity; (ii) the 3-O-alkyl-derivatives (2–14) exhibit stronger inhibitory activity than the corresponding 2-O-alkyl-derivatives (16–28); and (iii) derivatives with longer alkyl chains have stronger inhibitory activities. Mechanistically, our studies suggest that l-ascorbic acid derivatives exert their effects by suppressing the mRNA expression of tyrosinase and tyrosine-related protein-1.