Cargando…

Epidemiological trade‐off between intra‐ and interannual scales in the evolution of aggressiveness in a local plant pathogen population

The efficiency of plant resistance to fungal pathogen populations is expected to decrease over time, due to their evolution with an increase in the frequency of virulent or highly aggressive strains. This dynamics may differ depending on the scale investigated (annual or pluriannual), particularly f...

Descripción completa

Detalles Bibliográficos
Autores principales: Suffert, Frédéric, Goyeau, Henriette, Sache, Ivan, Carpentier, Florence, Gélisse, Sandrine, Morais, David, Delestre, Ghislain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979725/
https://www.ncbi.nlm.nih.gov/pubmed/29875818
http://dx.doi.org/10.1111/eva.12588
Descripción
Sumario:The efficiency of plant resistance to fungal pathogen populations is expected to decrease over time, due to their evolution with an increase in the frequency of virulent or highly aggressive strains. This dynamics may differ depending on the scale investigated (annual or pluriannual), particularly for annual crop pathogens with both sexual and asexual reproduction cycles. We assessed this time‐scale effect, by comparing aggressiveness changes in a local Zymoseptoria tritici population over an 8‐month cropping season and a 6‐year period of wheat monoculture. We collected two pairs of subpopulations to represent the annual and pluriannual scales: from leaf lesions at the beginning and end of a single annual epidemic and from crop debris at the beginning and end of a 6‐year period. We assessed two aggressiveness traits—latent period and lesion size—on sympatric and allopatric host varieties. A trend toward decreased latent period concomitant with a significant loss of variability was established during the course of the annual epidemic, but not over the 6‐year period. Furthermore, a significant cultivar effect (sympatric vs. allopatric) on the average aggressiveness of the isolates revealed host adaptation, arguing that the observed patterns could result from selection. We thus provide an experimental body of evidence of an epidemiological trade‐off between the intra‐ and interannual scales in the evolution of aggressiveness in a local plant pathogen population. More aggressive isolates were collected from upper leaves, on which disease severity is usually lower than on the lower part of the plants left in the field as crop debris after harvest. We suggest that these isolates play little role in sexual reproduction, due to an Allee effect (difficulty finding mates at low pathogen densities), particularly as the upper parts of the plant are removed from the field, explaining the lack of transmission of increases in aggressiveness between epidemics.