Cargando…

miR-378a-3p exerts tumor suppressive function on the tumorigenesis of esophageal squamous cell carcinoma by targeting Rab10

Esophageal squamous cell carcinoma (ESCC) is a life-threatening cancer with increasing incidence worldwide. MicroRNAs (miRs) have been reported to be involved in the progression of various types of cancer. In previous studies, the expression of miR-378a-3p was shown to be reduced in ESCC tissues. Ho...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Naixin, Sun, Xiujin, Wang, Tingting, Huang, Lei, Wen, Jing, Zhou, Yiqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979826/
https://www.ncbi.nlm.nih.gov/pubmed/29693138
http://dx.doi.org/10.3892/ijmm.2018.3639
Descripción
Sumario:Esophageal squamous cell carcinoma (ESCC) is a life-threatening cancer with increasing incidence worldwide. MicroRNAs (miRs) have been reported to be involved in the progression of various types of cancer. In previous studies, the expression of miR-378a-3p was shown to be reduced in ESCC tissues. However, the mechanism underlying the effect of miR-378a-3p in ESCC remains to be elucidated. By employing a reverse transcription-quantitative polymerase chain reaction, miR-378a-3p expression was tested in ESCC tissues and cell lines. In addition, the effects of miR-378a-3p on cell viability, proliferation, apoptosis, migration and invasion were studied using an MTT assay, an EdU assay, flow cytometry analysis, wound healing analysis and a Transwell assay. In the present study, the level of miR-378a-3p was significantly downregulated in ESCC clinical tissues and cell lines (EC109 and KYSE150). In addition, the overexpression of miR-378a-3p suppressed the viability, proliferation, migration and invasion of the ESCC cells. The upregulated expression of miR-378a-3p also increased the expression levels of B-cell lymphoma 2-associated X protein and caspase-3, and decreased the expression levels of matrix metalloproteinase (MMP)-2 and MMP-9, which attenuated ESCC tumorigenesis. Furthermore, Rab10 was confirmed to be a direct target gene of miR-378a-3p, and was negatively affected by miR-378a-3p. The silencing of Rab10 revealed antitumor effects in ESCC cell lines, and the expression of miR-378a-3p was negatively correlated with that of Rab10 in ESCC. Collectively, miR-378a-3p may act as a tumor-suppressor in ESCC cells through negatively regulating Rab10.