Cargando…

Metal behavior in the extremes of dynamics

When the rate of loading is faster than the rate at which material absorbs and converts energy to plastic work and damages, then there is an excess of energy that is partly stored in the material’s microstructure and the rest of it triggers micro-dynamic excitations. The additional storage necessita...

Descripción completa

Detalles Bibliográficos
Autor principal: Zubelewicz, Aleksander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5979983/
https://www.ncbi.nlm.nih.gov/pubmed/29581477
http://dx.doi.org/10.1038/s41598-018-23566-1
Descripción
Sumario:When the rate of loading is faster than the rate at which material absorbs and converts energy to plastic work and damages, then there is an excess of energy that is partly stored in the material’s microstructure and the rest of it triggers micro-dynamic excitations. The additional storage necessitates the development of plastic flow constraints and is directly responsible for the observed dynamic strengthening. At extreme conditions, we find that the micro-excitations contribute to the dynamic behavior. The phenomena are universally observed in metals, frictional materials and polymers. In essence, strong dynamics creates conditions at which materials are pushed from equilibrium and temporarily reside in an excited state of behavior. This study is focused on the behavior of metals. The concept is incorporated into a mechanisms-based constitutive model and is examined for annealed OFHC copper.