Cargando…

Sperm morphology and the evolution of intracellular sperm–egg interactions

Sperm morphology is incredibly diverse, even among closely related species, yet the coevolution between males and females of fertilization recognition systems is necessary for successful karyogamy (male and female pronuclear fusion). In most species, the entire sperm enters the egg during fertilizat...

Descripción completa

Detalles Bibliográficos
Autores principales: Southern, Helen M., Berger, Mitchell A., Young, Philippe G., Snook, Rhonda R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980432/
https://www.ncbi.nlm.nih.gov/pubmed/29876080
http://dx.doi.org/10.1002/ece3.4027
Descripción
Sumario:Sperm morphology is incredibly diverse, even among closely related species, yet the coevolution between males and females of fertilization recognition systems is necessary for successful karyogamy (male and female pronuclear fusion). In most species, the entire sperm enters the egg during fertilization so sperm morphological diversity may impact the intracellular sperm–egg interactions necessary for karyogamy. We quantified morphological variation of sperm inside eggs prior to and following karyogamy in several species of Drosophila to understand whether evolution of sperm morphology could influence intracellular sperm–egg interactions (ISEIs). We measured seven parameters that describe ISEIs among species to determine whether these parameters varied both within a species across development and across species at the same developmental stage. We used heterospecific crosses to test the relative role of male origin, female origin, and interaction between the male and female in determining ISEIs. We found that sperm shape changed within a species as development proceeded and, at particular development stages, species varied in some ISEIs. Parental origin had an effect on some ISEIs, with a general trend for a stronger female effect. Overall, our findings identify conserved and variable ISEIs among species and demonstrate the potential to contribute understanding to gamete evolution and development.