Cargando…
Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification
Lung cancer is a frequently lethal disease often causing death of human beings at an early age because of uncontrolled cell growth in the lung tissues. The diagnostic methods available are less than effective for detection of cancer. Therefore an automatic lesion segmentation method with computed to...
Autores principales: | Lavanya, M, Kannan, P Muthu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980900/ https://www.ncbi.nlm.nih.gov/pubmed/29286609 http://dx.doi.org/10.22034/APJCP.2017.18.12.3395 |
Ejemplares similares
-
New Technique for Automatic Segmentation of Blood Vessels in CT Scan Images of Liver Based on Optimized Fuzzy C-Means Method
por: Ahmadi, Katayoon, et al.
Publicado: (2016) -
Automatic Graph Cut Segmentation of Lesions in CT Using Mean Shift Superpixels
por: Ye, Xujiong, et al.
Publicado: (2010) -
Intelligent Automatic Segmentation of Wrist Ganglion Cysts Using DBSCAN and Fuzzy C-Means
por: Kim, Kwang Baek, et al.
Publicado: (2021) -
Fuzzy-C-Means Clustering Based Segmentation and CNN-Classification for Accurate Segmentation of Lung Nodules
por: K, Jalal Deen, et al.
Publicado: (2017) -
Multiscale Geometric Analysis Fusion-Based Unsupervised Change Detection in Remote Sensing Images via FLICM Model
por: Li, Liangliang, et al.
Publicado: (2022)