Cargando…
Privacy-Preserving Predictive Modeling: Harmonization of Contextual Embeddings From Different Sources
BACKGROUND: Data sharing has been a big challenge in biomedical informatics because of privacy concerns. Contextual embedding models have demonstrated a very strong representative capability to describe medical concepts (and their context), and they have shown promise as an alternative way to suppor...
Autores principales: | Huang, Yingxiang, Lee, Junghye, Wang, Shuang, Sun, Jimeng, Liu, Hongfang, Jiang, Xiaoqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981054/ https://www.ncbi.nlm.nih.gov/pubmed/29769172 http://dx.doi.org/10.2196/medinform.9455 |
Ejemplares similares
-
Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
por: Lee, Junghye, et al.
Publicado: (2018) -
A Predictive Model for Medical Events Based on Contextual Embedding of Temporal Sequences
por: Farhan, Wael, et al.
Publicado: (2016) -
A privacy-preserving distributed filtering framework for NLP artifacts
por: Sadat, Md Nazmus, et al.
Publicado: (2019) -
Privacy-preserving GWAS analysis on federated genomic datasets
por: Constable, Scott D, et al.
Publicado: (2015) -
Privacy-preserving logistic regression with secret sharing
por: Ghavamipour, Ali Reza, et al.
Publicado: (2022)