Cargando…
Predicting ionizing radiation exposure using biochemically-inspired genomic machine learning
Background: Gene signatures derived from transcriptomic data using machine learning methods have shown promise for biodosimetry testing. These signatures may not be sufficiently robust for large scale testing, as their performance has not been adequately validated on external, independent datasets....
Autores principales: | Zhao, Jonathan Z.L., Mucaki, Eliseos J., Rogan, Peter K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981198/ https://www.ncbi.nlm.nih.gov/pubmed/29904591 http://dx.doi.org/10.12688/f1000research.14048.2 |
Ejemplares similares
-
Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning
por: Mucaki, Eliseos J., et al.
Publicado: (2019) -
Predicting Outcomes of Hormone and Chemotherapy in the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) Study by Biochemically-inspired Machine Learning
por: Mucaki, Eliseos J., et al.
Publicado: (2017) -
Expression Changes Confirm Genomic Variants Predicted to Result in Allele-Specific, Alternative mRNA Splicing
por: Mucaki, Eliseos J., et al.
Publicado: (2020) -
Meeting radiation dosimetry capacity requirements of population-scale exposures by geostatistical sampling
por: Rogan, Peter K., et al.
Publicado: (2020) -
Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis
por: Caminsky, Natasha, et al.
Publicado: (2014)