Cargando…
Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry
Early detection of high fall risk is an essential component of fall prevention in older adults. Wearable sensors can provide valuable insight into daily-life activities; biomechanical features extracted from such inertial data have been shown to be of added value for the assessment of fall risk. Bod...
Autores principales: | Nait Aicha, Ahmed, Englebienne, Gwenn, van Schooten, Kimberley S., Pijnappels, Mirjam, Kröse, Ben |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981199/ https://www.ncbi.nlm.nih.gov/pubmed/29786659 http://dx.doi.org/10.3390/s18051654 |
Ejemplares similares
-
Association between Daily-Life Gait Quality Characteristics and Physiological Fall Risk in Older People
por: Schootemeijer, Sabine, et al.
Publicado: (2020) -
Quality of Daily-Life Gait: Novel Outcome for Trials that Focus on Balance, Mobility, and Falls
por: van Schooten, Kimberley S., et al.
Publicado: (2019) -
Fall-related gait characteristics on the treadmill and in daily life
por: Rispens, Sietse M., et al.
Publicado: (2016) -
Characteristics of daily life gait in fall and non fall-prone stroke survivors and controls
por: Punt, Michiel, et al.
Publicado: (2016) -
Fractional Stability of Trunk Acceleration Dynamics of Daily-Life Walking: Toward a Unified Concept of Gait Stability
por: Ihlen, Espen A. F., et al.
Publicado: (2017)