Cargando…
Diagnosis of atlanto-occipital dissociation: Standardised measurements of normal craniocervical relationship in finless porpoises (genus Neophocaena) using postmortem computed tomography
Due to the different craniocervical structures in humans and cetaceans, a standardised method assessing the normal craniocervical relationship in cetaceans is lacking, causing difficulties in defining the presence of atlanto-occipital dissociation (AOD) in cetaceans. The present study aimed to 1) de...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981431/ https://www.ncbi.nlm.nih.gov/pubmed/29855530 http://dx.doi.org/10.1038/s41598-018-26866-8 |
Sumario: | Due to the different craniocervical structures in humans and cetaceans, a standardised method assessing the normal craniocervical relationship in cetaceans is lacking, causing difficulties in defining the presence of atlanto-occipital dissociation (AOD) in cetaceans. The present study aimed to 1) describe a novel standardised method of determining the normal craniocervical relationships, and 2) define the 95% accuracy range of the normal craniocervical relationship in finless porpoises (genus Neophocaena), that allowed AOD diagnosis. Fifty-five out 83 stranded or by-caught finless porpoise carcasses were analyzed in term of their craniocervical relationship in dorsal-ventral and medial-lateral dimension, using postmortem computed tomography measurements. The normal craniocervical relationship in both dorsal-ventral (mean BD/OV: 0.87 ± 0.24 [2 SD]) and medial-lateral dimension (mean VR/VL: 0.98 ± 0.17 [2 SD]) was first defined. The 95% accuracy ranges of the normal craniocervical relationship in dorsal-ventral (0.63–1.11) and medial-lateral dimension (0.82–1.15) were proposed. The baseline ranges could facilitate AOD assessment, and provide an objective means of record for AOD related injury and death of cetaceans caused by anthropogenic trauma. The technique developed may be applied to live cetaceans with abnormal craniocervical relationship to aid diagnosis and guide corrective therapy. |
---|