Cargando…
Weed Growth Stage Estimator Using Deep Convolutional Neural Networks
This study outlines a new method of automatically estimating weed species and growth stages (from cotyledon until eight leaves are visible) of in situ images covering 18 weed species or families. Images of weeds growing within a variety of crops were gathered across variable environmental conditions...
Autores principales: | Teimouri, Nima, Dyrmann, Mads, Nielsen, Per Rydahl, Mathiassen, Solvejg Kopp, Somerville, Gayle J., Jørgensen, Rasmus Nyholm |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981438/ https://www.ncbi.nlm.nih.gov/pubmed/29772666 http://dx.doi.org/10.3390/s18051580 |
Ejemplares similares
-
A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network
por: Karimi, Hadi, et al.
Publicado: (2018) -
Weed Classification Using Explainable Multi-Resolution Slot Attention
por: Farkhani, Sadaf, et al.
Publicado: (2021) -
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks
por: Skovsen, Søren, et al.
Publicado: (2017) -
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks
por: Skovsen, Søren Kelstrup, et al.
Publicado: (2020) -
Biology and Management of Vulpia myuros—An Emerging Weed Problem in No-Till Cropping Systems in Europe
por: Akhter, Muhammad Javaid, et al.
Publicado: (2020)