Cargando…
Photonic machine learning implementation for signal recovery in optical communications
Machine learning techniques have proven very efficient in assorted classification tasks. Nevertheless, processing time-dependent high-speed signals can turn into an extremely challenging task, especially when these signals have been nonlinearly distorted. Recently, analogue hardware concepts using n...
Autores principales: | Argyris, Apostolos, Bueno, Julián, Fischer, Ingo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981473/ https://www.ncbi.nlm.nih.gov/pubmed/29855549 http://dx.doi.org/10.1038/s41598-018-26927-y |
Ejemplares similares
-
Photonic machine learning with on-chip diffractive optics
por: Fu, Tingzhao, et al.
Publicado: (2023) -
Fast physical repetitive patterns generation for masking in time-delay reservoir computing
por: Argyris, Apostolos, et al.
Publicado: (2021) -
Photonics: optical electronics in modern communications
por: Yariv, Amnon, et al.
Publicado: (2006) -
Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning
por: Fan, Qirui, et al.
Publicado: (2020) -
Wideband Anti-Jamming Based on Free Space Optical Communication and Photonic Signal Processing
por: Wu, Ben, et al.
Publicado: (2021)