Cargando…
Random Weighting, Strong Tracking, and Unscented Kalman Filter for Soft Tissue Characterization
This paper presents a new nonlinear filtering method based on the Hunt-Crossley model for online nonlinear soft tissue characterization. This method overcomes the problem of performance degradation in the unscented Kalman filter due to contact model error. It adopts the concept of Mahalanobis distan...
Autores principales: | Shin, Jaehyun, Zhong, Yongmin, Oetomo, Denny, Gu, Chengfan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981475/ https://www.ncbi.nlm.nih.gov/pubmed/29883430 http://dx.doi.org/10.3390/s18051650 |
Ejemplares similares
-
Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method
por: Yarahmadian, Mehran, et al.
Publicado: (2018) -
Multi-Sensor Optimal Data Fusion Based on the Adaptive Fading Unscented Kalman Filter
por: Gao, Bingbing, et al.
Publicado: (2018) -
Adaptive Square-Root Unscented Particle Filtering Algorithm for Dynamic Navigation
por: Wei, Wenhui, et al.
Publicado: (2018) -
Achieving Adaptive Visual Multi-Object Tracking with Unscented Kalman Filter
por: Zhang, Guowei, et al.
Publicado: (2022) -
Constrained Unscented Particle Filter for SINS/GNSS/ADS Integrated Airship Navigation in the Presence of Wind Field Disturbance
por: Gao, Zhaohui, et al.
Publicado: (2019)