Cargando…
Developing a Mixed Neural Network Approach to Forecast the Residential Electricity Consumption Based on Sensor Recorded Data
In this paper, we report a study having as a main goal the obtaining of a method that can provide an accurate forecast of the residential electricity consumption, refining it up to the appliance level, using sensor recorded data, for residential smart homes complexes that use renewable energy source...
Autores principales: | Oprea, Simona-Vasilica, Pîrjan, Alexandru, Căruțașu, George, Petroșanu, Dana-Mihaela, Bâra, Adela, Stănică, Justina-Lavinia, Coculescu, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981650/ https://www.ncbi.nlm.nih.gov/pubmed/29734761 http://dx.doi.org/10.3390/s18051443 |
Ejemplares similares
-
Feature engineering solution with structured query language analytic functions in detecting electricity frauds using machine learning
por: Oprea, Simona-Vasilica, et al.
Publicado: (2022) -
How Fast to Avoid Carbon Emissions: A Holistic View on the RES, Storage and Non-RES Replacement in Romania
por: Bâra, Adela, et al.
Publicado: (2023) -
Forecasting Electricity Consumption in Residential Buildings for Home Energy Management Systems
por: Bot, Karol, et al.
Publicado: (2020) -
Forecasting Energy Consumption in the EU Residential Sector
por: Bianco, Vincenzo, et al.
Publicado: (2020) -
Forecasted datasets of electric vehicle consumption on the electricity grid of Spain
por: Cama-Pinto, Dora, et al.
Publicado: (2020)