Cargando…

Unsupervised Indoor Localization Based on Smartphone Sensors, iBeacon and Wi-Fi

In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can bui...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jing, Zhang, Yi, Xue, Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981662/
https://www.ncbi.nlm.nih.gov/pubmed/29710808
http://dx.doi.org/10.3390/s18051378
Descripción
Sumario:In this paper, we propose UILoc, an unsupervised indoor localization scheme that uses a combination of smartphone sensors, iBeacons and Wi-Fi fingerprints for reliable and accurate indoor localization with zero labor cost. Firstly, compared with the fingerprint-based method, the UILoc system can build a fingerprint database automatically without any site survey and the database will be applied in the fingerprint localization algorithm. Secondly, since the initial position is vital to the system, UILoc will provide the basic location estimation through the pedestrian dead reckoning (PDR) method. To provide accurate initial localization, this paper proposes an initial localization module, a weighted fusion algorithm combined with a k-nearest neighbors (KNN) algorithm and a least squares algorithm. In UILoc, we have also designed a reliable model to reduce the landmark correction error. Experimental results show that the UILoc can provide accurate positioning, the average localization error is about 1.1 m in the steady state, and the maximum error is 2.77 m.