Cargando…
Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction
When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for...
Autores principales: | Chen, Peng, Yang, Yixin, Wang, Yong, Ma, Yuanliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981832/ https://www.ncbi.nlm.nih.gov/pubmed/29738510 http://dx.doi.org/10.3390/s18051476 |
Ejemplares similares
-
Robust Adaptive Beamforming with Optimal Covariance Matrix Estimation in the Presence of Gain-Phase Errors
por: Yao, Di, et al.
Publicado: (2020) -
Low-Complexity Robust Adaptive Beamforming Based on INCM Reconstruction via Subspace Projection
por: Duan, Yanliang, et al.
Publicado: (2021) -
Virtual covariance matrix reconstruction-based adaptive beamforming for small aperture array
por: Chang, Lin, et al.
Publicado: (2023) -
An Optimal Subspace Deconvolution Algorithm for Robust and High-Resolution Beamforming
por: Su, Xiruo, et al.
Publicado: (2022) -
Robust Null Broadening Beamforming Based on Covariance Matrix Reconstruction via Virtual Interference Sources
por: Yang, Jian, et al.
Publicado: (2020)