Cargando…
IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors
The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion...
Autores principales: | Arsalan, Muhammad, Naqvi, Rizwan Ali, Kim, Dong Seop, Nguyen, Phong Ha, Owais, Muhammad, Park, Kang Ryoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5981870/ https://www.ncbi.nlm.nih.gov/pubmed/29748495 http://dx.doi.org/10.3390/s18051501 |
Ejemplares similares
-
LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone
por: Nguyen, Phong Ha, et al.
Publicado: (2018) -
Convolutional Neural Network-Based Shadow Detection in Images Using Visible Light Camera Sensor
por: Kim, Dong Seop, et al.
Publicado: (2018) -
Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition †
por: Jenadeleh, Mohsen, et al.
Publicado: (2020) -
Deep RetinaNet-Based Detection and Classification of Road Markings by Visible Light Camera Sensors
por: Hoang, Toan Minh, et al.
Publicado: (2019) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019)