Cargando…
A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition
Daily land surface temperature (LST) forecasting is of great significance for application in climate-related, agricultural, eco-environmental, or industrial studies. Hybrid data-driven prediction models using Ensemble Empirical Mode Composition (EEMD) coupled with Machine Learning (ML) algorithms ar...
Autores principales: | Zhang, Xike, Zhang, Qiuwen, Zhang, Gui, Nie, Zhiping, Gui, Zifan, Que, Huafei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982071/ https://www.ncbi.nlm.nih.gov/pubmed/29883381 http://dx.doi.org/10.3390/ijerph15051032 |
Ejemplares similares
-
Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China
por: Li, Jizhen, et al.
Publicado: (2021) -
A Hybrid Model for Coronavirus Disease 2019 Forecasting Based on Ensemble Empirical Mode Decomposition and Deep Learning
por: Liu, Shidi, et al.
Publicado: (2022) -
Arrhythmia ECG Noise Reduction by Ensemble Empirical Mode Decomposition
por: Chang, Kang-Ming
Publicado: (2010) -
An Empirical Mode Decomposition Fuzzy Forecast Model for COVID-19
por: Chen, Bo-Lun, et al.
Publicado: (2022) -
An Empirical Mode Decomposition Fuzzy Forecast Model for Air Quality
por: Jiang, Wenxin, et al.
Publicado: (2022)