Cargando…
Deep Kalman Filter: Simultaneous Multi-Sensor Integration and Modelling; A GNSS/IMU Case Study
Bayes filters, such as the Kalman and particle filters, have been used in sensor fusion to integrate two sources of information and obtain the best estimate of unknowns. The efficient integration of multiple sensors requires deep knowledge of their error sources. Some sensors, such as Inertial Measu...
Autor principal: | Hosseinyalamdary, Siavash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982094/ https://www.ncbi.nlm.nih.gov/pubmed/29695119 http://dx.doi.org/10.3390/s18051316 |
Ejemplares similares
-
Sensor Fusion of GNSS and IMU Data for Robust Localization via Smoothed Error State Kalman Filter
por: Yin, Yuming, et al.
Publicado: (2023) -
A Modified Kalman Filter for Integrating the Different Rate Data of Gyros and Accelerometers Retrieved from Android Smartphones in the GNSS/IMU Coupled Navigation
por: Yan, Wenlin, et al.
Publicado: (2020) -
The Design of GNSS/IMU Loosely-Coupled Integration Filter for Wearable EPTS of Football Players
por: Kim, Mingu, et al.
Publicado: (2023) -
Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm †
por: Reuper, Björn, et al.
Publicado: (2018) -
Error Overboundings of KF-Based IMU/GNSS Integrated System Against IMU Faults
por: Liu, Wei, et al.
Publicado: (2019)