Cargando…

Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System

A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for e...

Descripción completa

Detalles Bibliográficos
Autores principales: de Moura, Karina de O. A., Balbinot, Alexandre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982165/
https://www.ncbi.nlm.nih.gov/pubmed/29723994
http://dx.doi.org/10.3390/s18051388
_version_ 1783328184517787648
author de Moura, Karina de O. A.
Balbinot, Alexandre
author_facet de Moura, Karina de O. A.
Balbinot, Alexandre
author_sort de Moura, Karina de O. A.
collection PubMed
description A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior.
format Online
Article
Text
id pubmed-5982165
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-59821652018-06-05 Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System de Moura, Karina de O. A. Balbinot, Alexandre Sensors (Basel) Article A few prosthetic control systems in the scientific literature obtain pattern recognition algorithms adapted to changes that occur in the myoelectric signal over time and, frequently, such systems are not natural and intuitive. These are some of the several challenges for myoelectric prostheses for everyday use. The concept of the virtual sensor, which has as its fundamental objective to estimate unavailable measures based on other available measures, is being used in other fields of research. The virtual sensor technique applied to surface electromyography can help to minimize these problems, typically related to the degradation of the myoelectric signal that usually leads to a decrease in the classification accuracy of the movements characterized by computational intelligent systems. This paper presents a virtual sensor in a new extensive fault-tolerant classification system to maintain the classification accuracy after the occurrence of the following contaminants: ECG interference, electrode displacement, movement artifacts, power line interference, and saturation. The Time-Varying Autoregressive Moving Average (TVARMA) and Time-Varying Kalman filter (TVK) models are compared to define the most robust model for the virtual sensor. Results of movement classification were presented comparing the usual classification techniques with the method of the degraded signal replacement and classifier retraining. The experimental results were evaluated for these five noise types in 16 surface electromyography (sEMG) channel degradation case studies. The proposed system without using classifier retraining techniques recovered of mean classification accuracy was of 4% to 38% for electrode displacement, movement artifacts, and saturation noise. The best mean classification considering all signal contaminants and channel combinations evaluated was the classification using the retraining method, replacing the degraded channel by the virtual sensor TVARMA model. This method recovered the classification accuracy after the degradations, reaching an average of 5.7% below the classification of the clean signal, that is the signal without the contaminants or the original signal. Moreover, the proposed intelligent technique minimizes the impact of the motion classification caused by signal contamination related to degrading events over time. There are improvements in the virtual sensor model and in the algorithm optimization that need further development to provide an increase the clinical application of myoelectric prostheses but already presents robust results to enable research with virtual sensors on biological signs with stochastic behavior. MDPI 2018-05-01 /pmc/articles/PMC5982165/ /pubmed/29723994 http://dx.doi.org/10.3390/s18051388 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
de Moura, Karina de O. A.
Balbinot, Alexandre
Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
title Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
title_full Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
title_fullStr Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
title_full_unstemmed Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
title_short Virtual Sensor of Surface Electromyography in a New Extensive Fault-Tolerant Classification System
title_sort virtual sensor of surface electromyography in a new extensive fault-tolerant classification system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982165/
https://www.ncbi.nlm.nih.gov/pubmed/29723994
http://dx.doi.org/10.3390/s18051388
work_keys_str_mv AT demourakarinadeoa virtualsensorofsurfaceelectromyographyinanewextensivefaulttolerantclassificationsystem
AT balbinotalexandre virtualsensorofsurfaceelectromyographyinanewextensivefaulttolerantclassificationsystem