Cargando…
A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network
Determining the individual location of a plant, besides evaluating sowing performance, would make subsequent treatment for each plant across a field possible. In this study, a system for locating cereal plant stem emerging points (PSEPs) has been developed. In total, 5719 images were gathered from s...
Autores principales: | Karimi, Hadi, Skovsen, Søren, Dyrmann, Mads, Nyholm Jørgensen, Rasmus |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982203/ https://www.ncbi.nlm.nih.gov/pubmed/29783642 http://dx.doi.org/10.3390/s18051611 |
Ejemplares similares
-
Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks
por: Skovsen, Søren Kelstrup, et al.
Publicado: (2020) -
Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks
por: Skovsen, Søren, et al.
Publicado: (2017) -
Weed Classification Using Explainable Multi-Resolution Slot Attention
por: Farkhani, Sadaf, et al.
Publicado: (2021) -
Weed Growth Stage Estimator Using Deep Convolutional Neural Networks
por: Teimouri, Nima, et al.
Publicado: (2018) -
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
por: Christiansen, Martin Peter, et al.
Publicado: (2017)