Cargando…
Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks
Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cr...
Autores principales: | Hefron, Ryan, Borghetti, Brett, Schubert Kabban, Christine, Christensen, James, Estepp, Justin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982227/ https://www.ncbi.nlm.nih.gov/pubmed/29701668 http://dx.doi.org/10.3390/s18051339 |
Ejemplares similares
-
The Effects of Individual Differences, Non-Stationarity, and the Importance of Data Partitioning Decisions for Training and Testing of EEG Cross-Participant Models
por: Kamrud, Alexander, et al.
Publicado: (2021) -
Generalized Deep Learning EEG Models for Cross-Participant and Cross-Task Detection of the Vigilance Decrement in Sustained Attention Tasks
por: Kamrud, Alexander, et al.
Publicado: (2021) -
Electrode replacement does not affect classification accuracy in dual-session use of a passive brain-computer interface for assessing cognitive workload
por: Estepp, Justin R., et al.
Publicado: (2015) -
Multi-scale convolutional recurrent neural network for psychiatric disorder identification in resting-state EEG
por: Yan, Weizheng, et al.
Publicado: (2023) -
An evaluation of mental workload with frontal EEG
por: So, Winnie K. Y., et al.
Publicado: (2017)