Cargando…
Electroencephalography Based Fusion Two-Dimensional (2D)-Convolution Neural Networks (CNN) Model for Emotion Recognition System
The purpose of this study is to improve human emotional classification accuracy using a convolution neural networks (CNN) model and to suggest an overall method to classify emotion based on multimodal data. We improved classification performance by combining electroencephalogram (EEG) and galvanic s...
Autores principales: | Kwon, Yea-Hoon, Shin, Sae-Byuk, Kim, Shin-Dug |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982398/ https://www.ncbi.nlm.nih.gov/pubmed/29710869 http://dx.doi.org/10.3390/s18051383 |
Ejemplares similares
-
DE-CNN: An Improved Identity Recognition Algorithm Based on the Emotional Electroencephalography
por: Wang, Yingdong, et al.
Publicado: (2020) -
Improved Handwritten Digit Recognition Using Convolutional Neural Networks (CNN)
por: Ahlawat, Savita, et al.
Publicado: (2020) -
A Bimodal Emotion Recognition Approach through the Fusion of Electroencephalography and Facial Sequences
por: Muhammad, Farah, et al.
Publicado: (2023) -
Review on Emotion Recognition Based on Electroencephalography
por: Liu, Haoran, et al.
Publicado: (2021) -
CNN-LRP: Understanding Convolutional Neural Networks Performance for Target Recognition in SAR Images
por: Zang, Bo, et al.
Publicado: (2021)