Cargando…
Unsupervised Learning for Monaural Source Separation Using Maximization–Minimization Algorithm with Time–Frequency Deconvolution †
This paper presents an unsupervised learning algorithm for sparse nonnegative matrix factor time–frequency deconvolution with optimized fractional [Formula: see text]-divergence. The [Formula: see text]-divergence is a group of cost functions parametrized by a single parameter [Formula: see text]. T...
Autores principales: | Woo, Wai Lok, Gao, Bin, Bouridane, Ahmed, Ling, Bingo Wing-Kuen, Chin, Cheng Siong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982401/ https://www.ncbi.nlm.nih.gov/pubmed/29702629 http://dx.doi.org/10.3390/s18051371 |
Ejemplares similares
-
Monaural Sound Localization Based on Reflective Structure and Homomorphic Deconvolution
por: Park, Yeonseok, et al.
Publicado: (2017) -
Temporal integration of monaural and dichotic frequency modulation
por: Palandrani, Katherine N., et al.
Publicado: (2021) -
Neural coding of monaural and binaural intensity at low stimulus frequencies
por: Bures, Zbynek, et al.
Publicado: (2015) -
A convolutional recurrent neural network with attention framework for speech separation in monaural recordings
por: Sun, Chao, et al.
Publicado: (2021) -
The Impact of Monaural Beat Stimulation on Anxiety and Cognition
por: Chaieb, Leila, et al.
Publicado: (2017)