Cargando…
Flight State Identification of a Self-Sensing Wing via an Improved Feature Selection Method and Machine Learning Approaches
In this work, a data-driven approach for identifying the flight state of a self-sensing wing structure with an embedded multi-functional sensing network is proposed. The flight state is characterized by the structural vibration signals recorded from a series of wind tunnel experiments under varying...
Autores principales: | Chen, Xi, Kopsaftopoulos, Fotis, Wu, Qi, Ren, He, Chang, Fu-Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982412/ https://www.ncbi.nlm.nih.gov/pubmed/29710832 http://dx.doi.org/10.3390/s18051379 |
Ejemplares similares
-
A Self-Adaptive 1D Convolutional Neural Network for Flight-State Identification
por: Chen, Xi, et al.
Publicado: (2019) -
Stochastic Identification of Guided Wave Propagation under Ambient Temperature via Non-Stationary Time Series Models
por: Ahmed, Shabbir, et al.
Publicado: (2021) -
Embodied airflow sensing for improved in-gust flight of flapping wing MAVs
por: Wang, Chenyao, et al.
Publicado: (2022) -
Wing structure and neural encoding jointly determine sensing strategies in insect flight
por: Weber, Alison I., et al.
Publicado: (2021) -
Raptor wing morphing with flight speed
por: Cheney, Jorn A., et al.
Publicado: (2021)