Cargando…

Mixed Incoherent Far-Field and Near-Field Source Localization under Uniform Circular Array

A high-accuracy algorithm is presented for the localization of mixed incoherent near-field and far-field narrow-band sources under uniform circular array (UCA). Herein, considering that it is difficult to classify the mixed sources, we first decouple mixed sources’ angles and ranges by calculating c...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Xiaolong, Liu, Zhen, Chen, Xin, Li, Xiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982470/
https://www.ncbi.nlm.nih.gov/pubmed/29734713
http://dx.doi.org/10.3390/s18051432
Descripción
Sumario:A high-accuracy algorithm is presented for the localization of mixed incoherent near-field and far-field narrow-band sources under uniform circular array (UCA). Herein, considering that it is difficult to classify the mixed sources, we first decouple mixed sources’ angles and ranges by calculating centro-symmetric sensors’ phase differences. Then, as the phase differences including only sources’ angles can be transformed as indefinite equations, each source’s azimuth angle and elevation angle are obtained by performing the least squares method. After that, on the basis of the estimated angles of the mixed sources, one-dimensional (1-D) multiple signal classification (MUSIC) method and corresponding spatial spectrum are utilized to identify the mixed sources and estimate the ranges of the near-field sources. Finally, simulation and comparison results verify the superior performance of our proposed algorithm.