Cargando…
Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It
The C1-2 joint is unique and is responsible for more than 50% of the neck rotation. The joints have an ergonomic design that allows maximum motion without getting dislocated. It provides six degrees of freedom, the maximum being axial rotation, and is a marvel of nature's engineering. The morph...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982474/ https://www.ncbi.nlm.nih.gov/pubmed/29899764 http://dx.doi.org/10.4103/JPN.JPN_73_17 |
_version_ | 1783328250245677056 |
---|---|
author | Salunke, Pravin |
author_facet | Salunke, Pravin |
author_sort | Salunke, Pravin |
collection | PubMed |
description | The C1-2 joint is unique and is responsible for more than 50% of the neck rotation. The joints have an ergonomic design that allows maximum motion without getting dislocated. It provides six degrees of freedom, the maximum being axial rotation, and is a marvel of nature's engineering. The morphometry of lateral masses of C1 and C2 joints was analyzed to explain the possible movements despite minor variations. The normal morphometry was compared with the joints of individuals with congenital atlantoaxial dislocation. The structural flaws were assessed to understand the forces leading to dislocation in various planes. The surgical correction of such flaws and engineering involved has been discussed. The joints of patients with congenital atlantoaxial dislocation are deformed and the lateral masses are trapezoidal as compared to the cuboidal lateral masses of normal individuals. The orientation of joints decides the direction and rate of slip of C1 over C2. Surgical correction of the joints is possible by drilling them, aiding in reduction, and preventing redislocation. The construct needs to be as close to the C1-2 joints as possible. Studying the engineering in naturally occurring joints gives us a chance to understand the dynamics of the abnormal ones. Correcting the deformed joints to near-normal ones makes realignment possible in all planes and helps in understanding the best construct to fuse them. Mimicking the naturally occurring joints can help us in developing prosthesis for C1-2 arthroplasty. |
format | Online Article Text |
id | pubmed-5982474 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-59824742018-06-13 Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It Salunke, Pravin J Pediatr Neurosci Review Article The C1-2 joint is unique and is responsible for more than 50% of the neck rotation. The joints have an ergonomic design that allows maximum motion without getting dislocated. It provides six degrees of freedom, the maximum being axial rotation, and is a marvel of nature's engineering. The morphometry of lateral masses of C1 and C2 joints was analyzed to explain the possible movements despite minor variations. The normal morphometry was compared with the joints of individuals with congenital atlantoaxial dislocation. The structural flaws were assessed to understand the forces leading to dislocation in various planes. The surgical correction of such flaws and engineering involved has been discussed. The joints of patients with congenital atlantoaxial dislocation are deformed and the lateral masses are trapezoidal as compared to the cuboidal lateral masses of normal individuals. The orientation of joints decides the direction and rate of slip of C1 over C2. Surgical correction of the joints is possible by drilling them, aiding in reduction, and preventing redislocation. The construct needs to be as close to the C1-2 joints as possible. Studying the engineering in naturally occurring joints gives us a chance to understand the dynamics of the abnormal ones. Correcting the deformed joints to near-normal ones makes realignment possible in all planes and helps in understanding the best construct to fuse them. Mimicking the naturally occurring joints can help us in developing prosthesis for C1-2 arthroplasty. Medknow Publications & Media Pvt Ltd 2018 /pmc/articles/PMC5982474/ /pubmed/29899764 http://dx.doi.org/10.4103/JPN.JPN_73_17 Text en Copyright: © 2018 Journal of Pediatric Neurosciences http://creativecommons.org/licenses/by-nc-sa/4.0 This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms. |
spellingShingle | Review Article Salunke, Pravin Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It |
title | Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It |
title_full | Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It |
title_fullStr | Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It |
title_full_unstemmed | Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It |
title_short | Congenital Atlantoaxial Dislocation: Nature's Engineering Gone Wrong and Surgeon's Attempt to Rectify It |
title_sort | congenital atlantoaxial dislocation: nature's engineering gone wrong and surgeon's attempt to rectify it |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982474/ https://www.ncbi.nlm.nih.gov/pubmed/29899764 http://dx.doi.org/10.4103/JPN.JPN_73_17 |
work_keys_str_mv | AT salunkepravin congenitalatlantoaxialdislocationnaturesengineeringgonewrongandsurgeonsattempttorectifyit |