Cargando…
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration sign...
Autores principales: | Liu, Chang, Cheng, Gang, Chen, Xihui, Pang, Yusong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982505/ https://www.ncbi.nlm.nih.gov/pubmed/29751671 http://dx.doi.org/10.3390/s18051523 |
Ejemplares similares
-
Research of Planetary Gear Fault Diagnosis Based on Permutation Entropy of CEEMDAN and ANFIS
por: Kuai, Moshen, et al.
Publicado: (2018) -
Planetary Gear Fault Diagnosis via Feature Image Extraction Based on Multi Central Frequencies and Vibration Signal Frequency Spectrum
por: Li, Yong, et al.
Publicado: (2018) -
Research on Bearing Fault Diagnosis Method Based on Filter Features of MOMLMEDA and LSTM
por: Li, Yong, et al.
Publicado: (2019) -
Fault Detection of Planetary Gears Based on Signal Space Constellations
por: Martincorena-Arraiza, Maite, et al.
Publicado: (2022) -
The IBA-ISMO Method for Rolling Bearing Fault Diagnosis Based on VMD-Sample Entropy
por: Zhuang, Deyu, et al.
Publicado: (2023)