Cargando…
An Embodied Multi-Sensor Fusion Approach to Visual Motion Estimation Using Unsupervised Deep Networks
Aimed at improving size, weight, and power (SWaP)-constrained robotic vision-aided state estimation, we describe our unsupervised, deep convolutional-deconvolutional sensor fusion network, Multi-Hypothesis DeepEfference (MHDE). MHDE learns to intelligently combine noisy heterogeneous sensor data to...
Autores principales: | Shamwell, E. Jared, Nothwang, William D., Perlis, Donald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982537/ https://www.ncbi.nlm.nih.gov/pubmed/29734687 http://dx.doi.org/10.3390/s18051427 |
Ejemplares similares
-
Vehicle Trajectory Estimation Based on Fusion of Visual Motion Features and Deep Learning
por: Qu, Lianen, et al.
Publicado: (2021) -
Sensor Data Fusion in Multi-Sensor Weigh-In-Motion Systems
por: Gajda, Janusz, et al.
Publicado: (2020) -
Canoeing Motion Tracking and Analysis via Multi-Sensors Fusion
por: Liu, Long, et al.
Publicado: (2020) -
Estimating the phase volume fraction of multi-phase steel via unsupervised deep learning
por: Kim, Sung Wook, et al.
Publicado: (2021) -
Sensor Fusion of Motion-Based Sign Language Interpretation with Deep Learning
por: Lee, Boon Giin, et al.
Publicado: (2020)