Cargando…
Integration of 24 Feature Types to Accurately Detect and Predict Seizures Using Scalp EEG Signals
The neurological disorder epilepsy causes substantial problems to the patients with uncontrolled seizures or even sudden deaths. Accurate detection and prediction of epileptic seizures will significantly improve the life quality of epileptic patients. Various feature extraction algorithms were propo...
Autores principales: | Zhang, Yinda, Yang, Shuhan, Liu, Yang, Zhang, Yexian, Han, Bingfeng, Zhou, Fengfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982573/ https://www.ncbi.nlm.nih.gov/pubmed/29710763 http://dx.doi.org/10.3390/s18051372 |
Ejemplares similares
-
Epileptic Seizure Prediction Using CSP and LDA for Scalp EEG Signals
por: Alotaiby, Turky N., et al.
Publicado: (2017) -
Detecting Epileptic Seizure from Scalp EEG Using Lyapunov Spectrum
por: Khoa, Truong Quang Dang, et al.
Publicado: (2012) -
Neuromorphic Architecture Accelerated Automated Seizure Detection in Multi-Channel Scalp EEG
por: Ambati, Ravi, et al.
Publicado: (2022) -
Classification of Scalp EEG States Prior to Clinical Seizure Onset
Publicado: (2019) -
Semisupervised Seizure Prediction in Scalp EEG Using Consistency Regularization
por: Liang, Deng, et al.
Publicado: (2022)