Cargando…
Self-Tuning Method for Increased Obstacle Detection Reliability Based on Internet of Things LiDAR Sensor Models
On-chip LiDAR sensors for vehicle collision avoidance are a rapidly expanding area of research and development. The assessment of reliable obstacle detection using data collected by LiDAR sensors has become a key issue that the scientific community is actively exploring. The design of a self-tuning...
Autores principales: | Castaño, Fernando, Beruvides, Gerardo, Villalonga, Alberto, Haber, Rodolfo E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982610/ https://www.ncbi.nlm.nih.gov/pubmed/29748521 http://dx.doi.org/10.3390/s18051508 |
Ejemplares similares
-
Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System
por: Castaño, Fernando, et al.
Publicado: (2017) -
Autonomous aerial obstacle avoidance using LiDAR sensor fusion
por: Liang, Qing, et al.
Publicado: (2023) -
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
LiDAR remote sensing and applications
por: Dong, Pinliang, et al.
Publicado: (2017) -
Utilising LiDAR for fall detection
por: Frøvik, Nikolai, et al.
Publicado: (2021)