Cargando…
Distributed Fast Self-Organized Maps for Massive Spectrophotometric Data Analysis †
Analyzing huge amounts of data becomes essential in the era of Big Data, where databases are populated with hundreds of Gigabytes that must be processed to extract knowledge. Hence, classical algorithms must be adapted towards distributed computing methodologies that leverage the underlying computat...
Autores principales: | Dafonte, Carlos, Garabato, Daniel, Álvarez, Marco A., Manteiga, Minia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982635/ https://www.ncbi.nlm.nih.gov/pubmed/29751580 http://dx.doi.org/10.3390/s18051419 |
Ejemplares similares
-
A Blended Artificial Intelligence Approach for Spectral Classification of Stars in Massive Astronomical Surveys
por: Dafonte, Carlos, et al.
Publicado: (2020) -
Phosphorus-rich stars with unusual abundances are challenging theoretical predictions
por: Masseron, Thomas, et al.
Publicado: (2020) -
Spectrophotometric Analysis of Caffeine
por: Ahmad Bhawani, Showkat, et al.
Publicado: (2015) -
Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect “Blood” and Body Surface Elution
por: Łoś, Aleksandra, et al.
Publicado: (2018) -
Challenges and solutions for the analysis of in situ, in crystallo micro-spectrophotometric data
por: Dworkowski, Florian S. N., et al.
Publicado: (2015)