Cargando…
Depth Reconstruction from Single Images Using a Convolutional Neural Network and a Condition Random Field Model
This paper presents an effective approach for depth reconstruction from a single image through the incorporation of semantic information and local details from the image. A unified framework for depth acquisition is constructed by joining a deep Convolutional Neural Network (CNN) and a continuous pa...
Autores principales: | Liu, Dan, Liu, Xuejun, Wu, Yiguang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982647/ https://www.ncbi.nlm.nih.gov/pubmed/29695129 http://dx.doi.org/10.3390/s18051318 |
Ejemplares similares
-
Depth Estimation for Light-Field Images Using Stereo Matching and Convolutional Neural Networks
por: Rogge, Ségolène, et al.
Publicado: (2020) -
Depth Estimation from Light Field Geometry Using Convolutional Neural Networks †
por: Han, Lei, et al.
Publicado: (2021) -
Depth in convolutional neural networks solves scene segmentation
por: Seijdel, Noor, et al.
Publicado: (2020) -
Depth Estimation and Semantic Segmentation from a Single RGB Image Using a Hybrid Convolutional Neural Network
por: Lin, Xiao, et al.
Publicado: (2019) -
A Convolutional Neural Network for Beamforming and Image Reconstruction in Passive Cavitation Imaging
por: Sharahi, Hossein J., et al.
Publicado: (2023)