Cargando…

Biological Oscillators in Nanonetworks—Opportunities and Challenges

One of the major issues in molecular communication-based nanonetworks is the provision and maintenance of a common time knowledge. To stay true to the definition of molecular communication, biological oscillators are the potential solutions to achieve that goal as they generate oscillations through...

Descripción completa

Detalles Bibliográficos
Autores principales: Shitiri, Ethungshan, Vasilakos, Athanasios V., Cho, Ho-Shin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982695/
https://www.ncbi.nlm.nih.gov/pubmed/29757252
http://dx.doi.org/10.3390/s18051544
Descripción
Sumario:One of the major issues in molecular communication-based nanonetworks is the provision and maintenance of a common time knowledge. To stay true to the definition of molecular communication, biological oscillators are the potential solutions to achieve that goal as they generate oscillations through periodic fluctuations in the concentrations of molecules. Through the lens of a communication systems engineer, the scope of this survey is to explicitly classify, for the first time, existing biological oscillators based on whether they are found in nature or not, to discuss, in a tutorial fashion, the main principles that govern the oscillations in each oscillator, and to analyze oscillator parameters that are most relevant to communication engineer researchers. In addition, the survey highlights and addresses the key open research issues pertaining to several physical aspects of the oscillators and the adoption and implementation of the oscillators to nanonetworks. Moreover, key research directions are discussed.