Cargando…
The Atypical Rho GTPase CHW-1 Works with SAX-3/Robo To Mediate Axon Guidance in Caenorhabditis elegans
During development, neuronal cells extend an axon toward their target destination in response to a cue to form a properly functioning nervous system. Rho proteins, Ras-related small GTPases that regulate cytoskeletal organization and dynamics, cell adhesion, and motility, are known to regulate axon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982818/ https://www.ncbi.nlm.nih.gov/pubmed/29653940 http://dx.doi.org/10.1534/g3.118.200148 |
Sumario: | During development, neuronal cells extend an axon toward their target destination in response to a cue to form a properly functioning nervous system. Rho proteins, Ras-related small GTPases that regulate cytoskeletal organization and dynamics, cell adhesion, and motility, are known to regulate axon guidance. Despite extensive knowledge about canonical Rho proteins (RhoA/Rac1/Cdc42), little is known about the Caenorhabditis elegans (C. elegans) atypical Cdc42-like family members CHW-1 and CRP-1 in regards to axon pathfinding and neuronal migration. chw-1(Chp/Wrch) encodes a protein that resembles human Chp (Wrch-2/RhoV) and Wrch-1 (RhoU), and crp-1 encodes for a protein that resembles TC10 and TCL. Here, we show that chw-1 works redundantly with crp-1 and cdc-42 in axon guidance. Furthermore, proper levels of chw-1 expression and activity are required for proper axon guidance. When examining CHW-1 GTPase mutants, we found that the native CHW-1 protein is likely partially activated, and mutations at a conserved residue (position 12 using Ras numbering, position 18 in CHW-1) alter axon guidance and neural migration. Additionally, we showed that chw-1 genetically interacts with the guidance receptor sax-3 in PDE neurons. Finally, in VD/DD motor neurons, chw-1 works downstream of sax-3 to control axon guidance. In summary, this is the first study implicating the atypical Rho GTPases chw-1 and crp-1 in axon guidance. Furthermore, this is the first evidence of genetic interaction between chw-1 and the guidance receptor sax-3. These data suggest that chw-1 is likely acting downstream and/or in parallel to sax-3 in axon guidance. |
---|