Cargando…

diploS/HIC: An Updated Approach to Classifying Selective Sweeps

Identifying selective sweeps in populations that have complex demographic histories remains a difficult problem in population genetics. We previously introduced a supervised machine learning approach, S/HIC, for finding both hard and soft selective sweeps in genomes on the basis of patterns of genet...

Descripción completa

Detalles Bibliográficos
Autores principales: Kern, Andrew D., Schrider, Daniel R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982824/
https://www.ncbi.nlm.nih.gov/pubmed/29626082
http://dx.doi.org/10.1534/g3.118.200262
Descripción
Sumario:Identifying selective sweeps in populations that have complex demographic histories remains a difficult problem in population genetics. We previously introduced a supervised machine learning approach, S/HIC, for finding both hard and soft selective sweeps in genomes on the basis of patterns of genetic variation surrounding a window of the genome. While S/HIC was shown to be both powerful and precise, the utility of S/HIC was limited by the use of phased genomic data as input. In this report we describe a deep learning variant of our method, diploS/HIC, that uses unphased genotypes to accurately classify genomic windows. diploS/HIC is shown to be quite powerful even at moderate to small sample sizes.