Cargando…

Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines

The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR‐targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are theref...

Descripción completa

Detalles Bibliográficos
Autores principales: De Pauw, Ines, Lardon, Filip, Van den Bossche, Jolien, Baysal, Hasan, Fransen, Erik, Deschoolmeester, Vanessa, Pauwels, Patrick, Peeters, Marc, Vermorken, Jan Baptist, Wouters, An
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983215/
https://www.ncbi.nlm.nih.gov/pubmed/29603584
http://dx.doi.org/10.1002/1878-0261.12197
_version_ 1783328384903806976
author De Pauw, Ines
Lardon, Filip
Van den Bossche, Jolien
Baysal, Hasan
Fransen, Erik
Deschoolmeester, Vanessa
Pauwels, Patrick
Peeters, Marc
Vermorken, Jan Baptist
Wouters, An
author_facet De Pauw, Ines
Lardon, Filip
Van den Bossche, Jolien
Baysal, Hasan
Fransen, Erik
Deschoolmeester, Vanessa
Pauwels, Patrick
Peeters, Marc
Vermorken, Jan Baptist
Wouters, An
author_sort De Pauw, Ines
collection PubMed
description The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR‐targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti‐EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first‐generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab‐sensitive, intrinsically cetuximab‐resistant, and acquired cetuximab‐resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab‐sensitive, intrinsically cetuximab‐resistant, and acquired cetuximab‐resistant HNSCC cell lines, independent of the HPV status. However, cross‐resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G(0)/G(1) cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed that afatinib maintained its cytotoxic effect under hypoxia. In conclusion, our preclinical data support the hypothesis that afatinib might be a promising therapeutic strategy to treat patients with HNSCC experiencing intrinsic or acquired cetuximab resistance.
format Online
Article
Text
id pubmed-5983215
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-59832152018-06-07 Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines De Pauw, Ines Lardon, Filip Van den Bossche, Jolien Baysal, Hasan Fransen, Erik Deschoolmeester, Vanessa Pauwels, Patrick Peeters, Marc Vermorken, Jan Baptist Wouters, An Mol Oncol Research Articles The epidermal growth factor receptor (EGFR, HER1) is a therapeutic target in head and neck squamous cell carcinoma (HNSCC). After initial promising results with EGFR‐targeted therapies such as cetuximab, therapeutic resistance has become a major clinical problem, and new treatment options are therefore necessary. Moreover, the relationship between HER receptors, anti‐EGFR therapies, and the human papillomavirus (HPV) status in HNSCC is not fully understood. In contrast to first‐generation EGFR inhibitors, afatinib irreversibly inhibits multiple HER receptors simultaneously. Therefore, treatment with afatinib might result in a more pronounced therapeutic benefit, even in patients experiencing cetuximab resistance. In this study, the cytotoxic effect of afatinib as single agent and in combination with cisplatin was investigated in cetuximab‐sensitive, intrinsically cetuximab‐resistant, and acquired cetuximab‐resistant HNSCC cell lines with different HPV status under normoxia and hypoxia. Furthermore, the influence of cetuximab resistance, HPV, and hypoxia on the expression of HER receptors was investigated. Our results demonstrated that afatinib was able to establish cytotoxicity in cetuximab‐sensitive, intrinsically cetuximab‐resistant, and acquired cetuximab‐resistant HNSCC cell lines, independent of the HPV status. However, cross‐resistance between cetuximab and afatinib might be possible. Treatment with afatinib caused a G(0)/G(1) cell cycle arrest as well as induction of apoptotic cell death. Additive to antagonistic interactions between afatinib and cisplatin could be observed. Neither cetuximab resistance nor HPV status significantly influenced the expression of HER receptors in HNSCC cell lines. In contrast, the expression of EGFR, HER2, and HER3 was significantly altered under hypoxia. Oxygen deficiency is a common characteristic of HNSCC tumors, and these hypoxic tumor regions often contain cells that are more resistant to treatment. However, we observed that afatinib maintained its cytotoxic effect under hypoxia. In conclusion, our preclinical data support the hypothesis that afatinib might be a promising therapeutic strategy to treat patients with HNSCC experiencing intrinsic or acquired cetuximab resistance. John Wiley and Sons Inc. 2018-05-01 2018-06 /pmc/articles/PMC5983215/ /pubmed/29603584 http://dx.doi.org/10.1002/1878-0261.12197 Text en © 2018 The Authors. Published by FEBS Press and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
De Pauw, Ines
Lardon, Filip
Van den Bossche, Jolien
Baysal, Hasan
Fransen, Erik
Deschoolmeester, Vanessa
Pauwels, Patrick
Peeters, Marc
Vermorken, Jan Baptist
Wouters, An
Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
title Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
title_full Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
title_fullStr Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
title_full_unstemmed Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
title_short Simultaneous targeting of EGFR, HER2, and HER4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
title_sort simultaneous targeting of egfr, her2, and her4 by afatinib overcomes intrinsic and acquired cetuximab resistance in head and neck squamous cell carcinoma cell lines
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983215/
https://www.ncbi.nlm.nih.gov/pubmed/29603584
http://dx.doi.org/10.1002/1878-0261.12197
work_keys_str_mv AT depauwines simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT lardonfilip simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT vandenbosschejolien simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT baysalhasan simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT fransenerik simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT deschoolmeestervanessa simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT pauwelspatrick simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT peetersmarc simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT vermorkenjanbaptist simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines
AT woutersan simultaneoustargetingofegfrher2andher4byafatinibovercomesintrinsicandacquiredcetuximabresistanceinheadandnecksquamouscellcarcinomacelllines