Cargando…
Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels
Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were h...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983243/ https://www.ncbi.nlm.nih.gov/pubmed/29735944 http://dx.doi.org/10.3390/toxins10050187 |
_version_ | 1783328390526271488 |
---|---|
author | Falade, Titilayo D. O. Chrysanthopoulos, Panagiotis K. Hodson, Mark P. Sultanbawa, Yasmina Fletcher, Mary Darnell, Ross Korie, Sam Fox, Glen |
author_facet | Falade, Titilayo D. O. Chrysanthopoulos, Panagiotis K. Hodson, Mark P. Sultanbawa, Yasmina Fletcher, Mary Darnell, Ross Korie, Sam Fox, Glen |
author_sort | Falade, Titilayo D. O. |
collection | PubMed |
description | Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity. |
format | Online Article Text |
id | pubmed-5983243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59832432018-06-06 Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels Falade, Titilayo D. O. Chrysanthopoulos, Panagiotis K. Hodson, Mark P. Sultanbawa, Yasmina Fletcher, Mary Darnell, Ross Korie, Sam Fox, Glen Toxins (Basel) Article Aflatoxin contamination is associated with the development of aflatoxigenic fungi such as Aspergillus flavus and A. parasiticus on food grains. This study was aimed at investigating metabolites produced during fungal development on maize and their correlation with aflatoxin levels. Maize cobs were harvested at R3 (milk), R4 (dough), and R5 (dent) stages of maturity. Individual kernels were inoculated in petri dishes with four doses of fungal spores. Fungal colonisation, metabolite profile, and aflatoxin levels were examined. Grain colonisation decreased with kernel maturity: milk-, dough-, and dent-stage kernels by approximately 100%, 60%, and 30% respectively. Aflatoxin levels increased with dose at dough and dent stages. Polar metabolites including alanine, proline, serine, valine, inositol, iso-leucine, sucrose, fructose, trehalose, turanose, mannitol, glycerol, arabitol, inositol, myo-inositol, and some intermediates of the tricarboxylic acid cycle (TCA—also known as citric acid or Krebs cycle) were important for dose classification. Important non-polar metabolites included arachidic, palmitic, stearic, 3,4-xylylic, and margaric acids. Aflatoxin levels correlated with levels of several polar metabolites. The strongest positive and negative correlations were with arabitol (R = 0.48) and turanose and (R = −0.53), respectively. Several metabolites were interconnected with the TCA; interconnections of the metabolites with the TCA cycle varied depending upon the grain maturity. MDPI 2018-05-07 /pmc/articles/PMC5983243/ /pubmed/29735944 http://dx.doi.org/10.3390/toxins10050187 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Falade, Titilayo D. O. Chrysanthopoulos, Panagiotis K. Hodson, Mark P. Sultanbawa, Yasmina Fletcher, Mary Darnell, Ross Korie, Sam Fox, Glen Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels |
title | Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels |
title_full | Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels |
title_fullStr | Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels |
title_full_unstemmed | Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels |
title_short | Metabolites Identified during Varied Doses of Aspergillus Species in Zea mays Grains, and Their Correlation with Aflatoxin Levels |
title_sort | metabolites identified during varied doses of aspergillus species in zea mays grains, and their correlation with aflatoxin levels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983243/ https://www.ncbi.nlm.nih.gov/pubmed/29735944 http://dx.doi.org/10.3390/toxins10050187 |
work_keys_str_mv | AT faladetitilayodo metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT chrysanthopoulospanagiotisk metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT hodsonmarkp metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT sultanbawayasmina metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT fletchermary metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT darnellross metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT koriesam metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels AT foxglen metabolitesidentifiedduringvarieddosesofaspergillusspeciesinzeamaysgrainsandtheircorrelationwithaflatoxinlevels |