Cargando…

Characterization of Norwalk virus GI specific monoclonal antibodies generated against Escherichia coli expressed capsid protein and the reactivity of two broadly reactive monoclonal antibodies generated against GII capsid towards GI recombinant fragments

BACKGROUND: Norwalk virus causes outbreaks of acute non-bacterial gastroenteritis in humans. The virus capsid is composed of a single 60 kDa protein. In a previous study, the capsid protein of recombinant Norwalk virus genogroup II was expressed in an E. coli system and monoclonal antibodies were ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoda, Tomoko, Terano, Yoshitake, Suzuki, Yasuhiko, Yamazaki, Kenji, Oishi, Isao, Kuzuguchi, Tsuyoshi, Kawamoto, Hiroyoshi, Utagawa, Etsuko, Takino, Koichi, Oda, Hajime, Shibata, Tadayoshi
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2001
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC59833/
https://www.ncbi.nlm.nih.gov/pubmed/11710959
Descripción
Sumario:BACKGROUND: Norwalk virus causes outbreaks of acute non-bacterial gastroenteritis in humans. The virus capsid is composed of a single 60 kDa protein. In a previous study, the capsid protein of recombinant Norwalk virus genogroup II was expressed in an E. coli system and monoclonal antibodies were generated against it. The analysis of the reactivity of those monoclonal antibodies suggested that the N-terminal domain might contain more antigenic epitopes than the C-terminal domain. In the same study, two broadly reactive monoclonal antibodies were observed to react with genogroup I recombinant protein. RESULTS: In the present study, we used the recombinant capsid protein of genogroup I and characterized the obtained 17 monoclonal antibodies by using 19 overlapping fragments. Sixteen monoclonal antibodies recognized sequential epitopes on three antigenic regions, and the only exceptional monoclonal antibody recognized a conformational epitope. As for the two broadly reactive monoclonal antibodies generated against genogroup II, we indicated that they recognized fragment 2 of genogroup I. Furthermore, genogroup I antigen from a patient's stool was detected by sandwich enzyme-linked immunosorbent assay using genogroup I specific monoclonal antibody and biotinated broadly reactive monoclonal antibody. CONCLUSION: The reactivity analysis of above monoclonal antibodies suggests that the N-terminal domain may contain more antigenic epitopes than the C-terminal domain as suggested in our previous study. The detection of genogroup I antigen from a patient's stool by our system suggested that the monoclonal antibodies generated against E. coli expressed capsid protein can be used to detect genogroup I antigens in clinical material.