Cargando…

On the design of power gear trains: Insight regarding number of stages and their respective ratios

This paper presents a formulation for selecting the stage ratios and number of stages in a multistage transmission with a given desired total transmission ratio in a manner that maximizes efficiency, maximizes acceleration, or minimizes the mass of the transmission. The formulation is used to highli...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartlett, Harrison L., Lawson, Brian E., Goldfarb, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983518/
https://www.ncbi.nlm.nih.gov/pubmed/29856863
http://dx.doi.org/10.1371/journal.pone.0198048
Descripción
Sumario:This paper presents a formulation for selecting the stage ratios and number of stages in a multistage transmission with a given desired total transmission ratio in a manner that maximizes efficiency, maximizes acceleration, or minimizes the mass of the transmission. The formulation is used to highlight several implications for gear train design, including the fact that minimizing rotational inertia and mass are competing objectives with respect to optimal selection of stage ratios, and that both rotational inertia and mass can often be minimized by increasing the total number of stages beyond a minimum realizable number. Additionally, a multistage transmission will generally provide maximum acceleration when the stage ratios increase monotonically from the motor to the load. The transmission will have minimum mass when the stage ratios decrease monotonically. The transmission will also provide maximum efficiency when the corresponding stages employ constant stage ratios. This paper aims to use this optimization formulation to elucidate tradeoffs between various common objectives in gear train design (efficiency, acceleration, and mass).