Cargando…
Enhancing the usability of low-cost eye trackers for rehabilitation applications
Eye tracking is one of the most widely used technique for assessment, screening and human-machine interaction related applications. There are certain issues which limit the usage of eye trackers in practical scenarios, viz., i) need to perform multiple calibrations and ii) presence of inherent noise...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983534/ https://www.ncbi.nlm.nih.gov/pubmed/29856798 http://dx.doi.org/10.1371/journal.pone.0196348 |
Sumario: | Eye tracking is one of the most widely used technique for assessment, screening and human-machine interaction related applications. There are certain issues which limit the usage of eye trackers in practical scenarios, viz., i) need to perform multiple calibrations and ii) presence of inherent noise in the recorded data. To address these issues, we have proposed a protocol for one-time calibration against the “regular” or the “multiple” calibration phases. It is seen that though it is always desirable to perform multiple calibration, the one-time calibration also produces comparable results and might be better for individuals who are not able to perform multiple calibrations. In that case, “One-time calibration” can also be done by a participant and the calibration results are used for the rest of the participants, provided the chin rest and the eye tracker positions are unaltered. The second major issue is the presence of the inherent noise in the raw gaze data, leading to systematic and variable errors. We have proposed a signal processing chain to remove these two types of errors. Two different psychological stimuli-based tasks, namely, recall-recognition test and number gazing task are used as a case study for the same. It is seen that the proposed approach gives satisfactory results even with one-time calibration. The study is also extended to test the effect of long duration task on the performance of the proposed algorithm and the results confirm that the proposed methods work well in such scenarios too. |
---|