Cargando…

Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling

Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Sargenti, Azzurra, Castiglioni, Sara, Olivi, Elena, Bianchi, Francesca, Cazzaniga, Alessandra, Farruggia, Giovanna, Cappadone, Concettina, Merolle, Lucia, Malucelli, Emil, Ventura, Carlo, Maier, Jeanette A. M., Iotti, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983826/
https://www.ncbi.nlm.nih.gov/pubmed/29747379
http://dx.doi.org/10.3390/ijms19051410
_version_ 1783328508671426560
author Sargenti, Azzurra
Castiglioni, Sara
Olivi, Elena
Bianchi, Francesca
Cazzaniga, Alessandra
Farruggia, Giovanna
Cappadone, Concettina
Merolle, Lucia
Malucelli, Emil
Ventura, Carlo
Maier, Jeanette A. M.
Iotti, Stefano
author_facet Sargenti, Azzurra
Castiglioni, Sara
Olivi, Elena
Bianchi, Francesca
Cazzaniga, Alessandra
Farruggia, Giovanna
Cappadone, Concettina
Merolle, Lucia
Malucelli, Emil
Ventura, Carlo
Maier, Jeanette A. M.
Iotti, Stefano
author_sort Sargenti, Azzurra
collection PubMed
description Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the transcription of multipotency markers and tissue-specific transcription factors in human adipose-derived mesenchymal stem cells exposed to a mixture of natural molecules, i.e., hyaluronic, butyric and retinoid acids, which tunes differentiation. We also demonstrate that magnesium deficiency accelerates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. We argue that magnesium deprivation generates a stressful condition that modulates stem cell plasticity and differentiation potential. These studies indicate that it is possible to remodel transcription in mesenchymal stem cells by lowering extracellular magnesium without the need for genetic manipulation, thus offering new hints for regenerative medicine applications.
format Online
Article
Text
id pubmed-5983826
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-59838262018-06-05 Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling Sargenti, Azzurra Castiglioni, Sara Olivi, Elena Bianchi, Francesca Cazzaniga, Alessandra Farruggia, Giovanna Cappadone, Concettina Merolle, Lucia Malucelli, Emil Ventura, Carlo Maier, Jeanette A. M. Iotti, Stefano Int J Mol Sci Article Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the transcription of multipotency markers and tissue-specific transcription factors in human adipose-derived mesenchymal stem cells exposed to a mixture of natural molecules, i.e., hyaluronic, butyric and retinoid acids, which tunes differentiation. We also demonstrate that magnesium deficiency accelerates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. We argue that magnesium deprivation generates a stressful condition that modulates stem cell plasticity and differentiation potential. These studies indicate that it is possible to remodel transcription in mesenchymal stem cells by lowering extracellular magnesium without the need for genetic manipulation, thus offering new hints for regenerative medicine applications. MDPI 2018-05-09 /pmc/articles/PMC5983826/ /pubmed/29747379 http://dx.doi.org/10.3390/ijms19051410 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Sargenti, Azzurra
Castiglioni, Sara
Olivi, Elena
Bianchi, Francesca
Cazzaniga, Alessandra
Farruggia, Giovanna
Cappadone, Concettina
Merolle, Lucia
Malucelli, Emil
Ventura, Carlo
Maier, Jeanette A. M.
Iotti, Stefano
Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
title Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
title_full Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
title_fullStr Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
title_full_unstemmed Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
title_short Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
title_sort magnesium deprivation potentiates human mesenchymal stem cell transcriptional remodeling
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983826/
https://www.ncbi.nlm.nih.gov/pubmed/29747379
http://dx.doi.org/10.3390/ijms19051410
work_keys_str_mv AT sargentiazzurra magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT castiglionisara magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT olivielena magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT bianchifrancesca magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT cazzanigaalessandra magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT farruggiagiovanna magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT cappadoneconcettina magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT merollelucia magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT malucelliemil magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT venturacarlo magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT maierjeanetteam magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling
AT iottistefano magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling