Cargando…
Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling
Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the tra...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983826/ https://www.ncbi.nlm.nih.gov/pubmed/29747379 http://dx.doi.org/10.3390/ijms19051410 |
_version_ | 1783328508671426560 |
---|---|
author | Sargenti, Azzurra Castiglioni, Sara Olivi, Elena Bianchi, Francesca Cazzaniga, Alessandra Farruggia, Giovanna Cappadone, Concettina Merolle, Lucia Malucelli, Emil Ventura, Carlo Maier, Jeanette A. M. Iotti, Stefano |
author_facet | Sargenti, Azzurra Castiglioni, Sara Olivi, Elena Bianchi, Francesca Cazzaniga, Alessandra Farruggia, Giovanna Cappadone, Concettina Merolle, Lucia Malucelli, Emil Ventura, Carlo Maier, Jeanette A. M. Iotti, Stefano |
author_sort | Sargenti, Azzurra |
collection | PubMed |
description | Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the transcription of multipotency markers and tissue-specific transcription factors in human adipose-derived mesenchymal stem cells exposed to a mixture of natural molecules, i.e., hyaluronic, butyric and retinoid acids, which tunes differentiation. We also demonstrate that magnesium deficiency accelerates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. We argue that magnesium deprivation generates a stressful condition that modulates stem cell plasticity and differentiation potential. These studies indicate that it is possible to remodel transcription in mesenchymal stem cells by lowering extracellular magnesium without the need for genetic manipulation, thus offering new hints for regenerative medicine applications. |
format | Online Article Text |
id | pubmed-5983826 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59838262018-06-05 Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling Sargenti, Azzurra Castiglioni, Sara Olivi, Elena Bianchi, Francesca Cazzaniga, Alessandra Farruggia, Giovanna Cappadone, Concettina Merolle, Lucia Malucelli, Emil Ventura, Carlo Maier, Jeanette A. M. Iotti, Stefano Int J Mol Sci Article Magnesium plays a pivotal role in energy metabolism and in the control of cell growth. While magnesium deprivation clearly shapes the behavior of normal and neoplastic cells, little is known on the role of this element in cell differentiation. Here we show that magnesium deficiency increases the transcription of multipotency markers and tissue-specific transcription factors in human adipose-derived mesenchymal stem cells exposed to a mixture of natural molecules, i.e., hyaluronic, butyric and retinoid acids, which tunes differentiation. We also demonstrate that magnesium deficiency accelerates the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. We argue that magnesium deprivation generates a stressful condition that modulates stem cell plasticity and differentiation potential. These studies indicate that it is possible to remodel transcription in mesenchymal stem cells by lowering extracellular magnesium without the need for genetic manipulation, thus offering new hints for regenerative medicine applications. MDPI 2018-05-09 /pmc/articles/PMC5983826/ /pubmed/29747379 http://dx.doi.org/10.3390/ijms19051410 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sargenti, Azzurra Castiglioni, Sara Olivi, Elena Bianchi, Francesca Cazzaniga, Alessandra Farruggia, Giovanna Cappadone, Concettina Merolle, Lucia Malucelli, Emil Ventura, Carlo Maier, Jeanette A. M. Iotti, Stefano Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling |
title | Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling |
title_full | Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling |
title_fullStr | Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling |
title_full_unstemmed | Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling |
title_short | Magnesium Deprivation Potentiates Human Mesenchymal Stem Cell Transcriptional Remodeling |
title_sort | magnesium deprivation potentiates human mesenchymal stem cell transcriptional remodeling |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983826/ https://www.ncbi.nlm.nih.gov/pubmed/29747379 http://dx.doi.org/10.3390/ijms19051410 |
work_keys_str_mv | AT sargentiazzurra magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT castiglionisara magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT olivielena magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT bianchifrancesca magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT cazzanigaalessandra magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT farruggiagiovanna magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT cappadoneconcettina magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT merollelucia magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT malucelliemil magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT venturacarlo magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT maierjeanetteam magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling AT iottistefano magnesiumdeprivationpotentiateshumanmesenchymalstemcelltranscriptionalremodeling |