Cargando…
Nanophotonic particle simulation and inverse design using artificial neural networks
We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate su...
Autores principales: | Peurifoy, John, Shen, Yichen, Jing, Li, Yang, Yi, Cano-Renteria, Fidel, DeLacy, Brendan G., Joannopoulos, John D., Tegmark, Max, Soljačić, Marin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983917/ https://www.ncbi.nlm.nih.gov/pubmed/29868640 http://dx.doi.org/10.1126/sciadv.aar4206 |
Ejemplares similares
-
Artificial neural networks enabled by nanophotonics
por: Zhang, Qiming, et al.
Publicado: (2019) -
Fabrication-constrained nanophotonic inverse design
por: Piggott, Alexander Y., et al.
Publicado: (2017) -
Non-Abelian generalizations of the Hofstadter model: spin–orbit-coupled butterfly pairs
por: Yang, Yi, et al.
Publicado: (2020) -
Author Correction: Non-Abelian generalizations of the Hofstadter model: spin–orbit-coupled butterfly pairs
por: Yang, Yi, et al.
Publicado: (2021) -
Machine Learning
in Interpolation and Extrapolation
for Nanophotonic Inverse Design
por: Acharige, Didulani, et al.
Publicado: (2022)