Cargando…
Genome-wide prediction of cis-regulatory regions using supervised deep learning methods
BACKGROUND: In the human genome, 98% of DNA sequences are non-protein-coding regions that were previously disregarded as junk DNA. In fact, non-coding regions host a variety of cis-regulatory regions which precisely control the expression of genes. Thus, Identifying active cis-regulatory regions in...
Autores principales: | Li, Yifeng, Shi, Wenqiang, Wasserman, Wyeth W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984344/ https://www.ncbi.nlm.nih.gov/pubmed/29855387 http://dx.doi.org/10.1186/s12859-018-2187-1 |
Ejemplares similares
-
Gene expression models based on transcription factor binding events confer insight into functional cis-regulatory variants
por: Shi, Wenqiang, et al.
Publicado: (2019) -
Identification of cis-regulatory sequence variations in individual genome sequences
por: Worsley-Hunt, Rebecca, et al.
Publicado: (2011) -
Single_cell_GRN: gene regulatory network identification based on supervised learning method and Single-cell RNA-seq data
por: Yang, Bin, et al.
Publicado: (2022) -
Validation of Skeletal Muscle cis-Regulatory Module Predictions Reveals Nucleotide Composition Bias in Functional Enhancers
por: Kwon, Andrew T., et al.
Publicado: (2011) -
Using hexamers to predict cis-regulatory motifs in Drosophila
por: Chan, Bob Y, et al.
Publicado: (2005)