Cargando…
Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data
Identifying causal effects in nonexperimental data is an enduring challenge. One proposed solution that recently gained popularity is the idea to use genes as instrumental variables [i.e., Mendelian randomization (MR)]. However, this approach is problematic because many variables of interest are gen...
Autores principales: | DiPrete, Thomas A., Burik, Casper A. P., Koellinger, Philipp D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984483/ https://www.ncbi.nlm.nih.gov/pubmed/29686100 http://dx.doi.org/10.1073/pnas.1707388115 |
Ejemplares similares
-
Status threat, not economic hardship, explains the 2016 presidential vote
por: Mutz, Diana C.
Publicado: (2018) -
A modern maximum-likelihood theory for high-dimensional logistic regression
por: Sur, Pragya, et al.
Publicado: (2019) -
Gain control explains the effect of distraction in human perceptual, cognitive, and economic decision making
por: Li, Vickie, et al.
Publicado: (2018) -
Suppressor mutation analysis combined with 3D modeling explains cohesin’s capacity to hold and release DNA
por: Xu, Xingya, et al.
Publicado: (2018) -
Advantaged socioeconomic conditions in childhood are associated with higher cognitive functioning but stronger cognitive decline in older age
por: Aartsen, Marja J., et al.
Publicado: (2019)