Cargando…
Brain lesion segmentation through image synthesis and outlier detection
Cerebral small vessel disease (SVD) can manifest in a number of ways. Many of these result in hyperintense regions visible on T(2)-weighted magnetic resonance (MR) images. The automatic segmentation of these lesions has been the focus of many studies. However, previous methods tended to be limited t...
Autores principales: | Bowles, Christopher, Qin, Chen, Guerrero, Ricardo, Gunn, Roger, Hammers, Alexander, Dickie, David Alexander, Valdés Hernández, Maria, Wardlaw, Joanna, Rueckert, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984574/ https://www.ncbi.nlm.nih.gov/pubmed/29868438 http://dx.doi.org/10.1016/j.nicl.2017.09.003 |
Ejemplares similares
-
White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks
por: Guerrero, R., et al.
Publicado: (2017) -
Detection of Lesions Underlying Intractable Epilepsy on T1-Weighted MRI as an Outlier Detection Problem
por: El Azami, Meriem, et al.
Publicado: (2016) -
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017) -
Brain structure segmentation in the presence of multiple sclerosis lesions
por: González-Villà, Sandra, et al.
Publicado: (2019) -
Automated multiclass tissue segmentation of clinical brain MRIs with lesions
por: Weiss, David A., et al.
Publicado: (2021)