Cargando…
Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia
BACKGROUND: Reactive case detection (RACD) is an active case finding strategy where households and neighbours of a passively identified case (index case) are screened to identify and treat additional malaria infections with the goal of gathering surveillance information and potentially reducing furt...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984760/ https://www.ncbi.nlm.nih.gov/pubmed/29859081 http://dx.doi.org/10.1186/s12936-018-2361-y |
_version_ | 1783328658388156416 |
---|---|
author | Zelman, Brittany W. Baral, Ranju Zarlinda, Iska Coutrier, Farah N. Sanders, Kelly C. Cotter, Chris Herdiana, Herdiana Greenhouse, Bryan Shretta, Rima Gosling, Roly D. Hsiang, Michelle S. |
author_facet | Zelman, Brittany W. Baral, Ranju Zarlinda, Iska Coutrier, Farah N. Sanders, Kelly C. Cotter, Chris Herdiana, Herdiana Greenhouse, Bryan Shretta, Rima Gosling, Roly D. Hsiang, Michelle S. |
author_sort | Zelman, Brittany W. |
collection | PubMed |
description | BACKGROUND: Reactive case detection (RACD) is an active case finding strategy where households and neighbours of a passively identified case (index case) are screened to identify and treat additional malaria infections with the goal of gathering surveillance information and potentially reducing further transmission. Although it is widely considered a key strategy in low burden settings, little is known about the costs and the cost-effectiveness of different diagnostic methods used for RACD. The aims of this study were to measure the cost of conducting RACD and compare the cost-effectiveness of microscopy to the more sensitive diagnostic method loop-mediated isothermal amplification (LAMP). METHODS: The study was conducted in RACD surveillance sites in five sub-districts in Aceh Besar, Indonesia. The cost inputs and yield of implementing RACD with microscopy and/or LAMP were collected prospectively over a 20 months study period between May 2014 and December 2015. Costs and cost-effectiveness (USD) of the different strategies were examined. The main cost measures were cost per RACD event, per person screened, per population at risk (PAR); defined as total population in each sub-district, and per infection found. The main cost-effectiveness measure was incremental cost-effectiveness ratio (ICER), expressed as cost per malaria infection detected by LAMP versus microscopy. The effects of varying test positivity rate or diagnostic yield on cost per infection identified and ICER were also assessed. RESULTS: Among 1495 household members and neighbours screened in 36 RACD events, two infections were detected by microscopy and confirmed by LAMP, and four infections were missed by microscopy but detected by LAMP. The average total cost of conducting RACD using microscopy and LAMP was $1178 per event with LAMP-specific consumables and personnel being the main cost drivers. The average cost of screening one individual during RACD was $11, with an additional cost of diagnostics at $0.62 and $16 per person for microscopy and LAMP, respectively. As a public health intervention, RACD using both diagnostics cost an average of $0.42 per PAR per year. Comparing RACD using microscopy only versus RACD using LAMP only, the cost per infection found was $8930 and $6915, respectively. To add LAMP as an additional intervention accompanying RACD would cost $9 per individual screened annually in this setting. The ICER was estimated to be $5907 per additional malaria infection detected by LAMP versus microscopy. Cost per infection identified and ICER declined with increasing test positivity rate and increasing diagnostic yield. CONCLUSIONS: This study provides the first estimates on the cost and cost-effectiveness of RACD from a low transmission setting. Costs per individual screened were high, though costs per PAR were low. Compared to microscopy, the use of LAMP in RACD was more costly but more cost-effective for the detection of infections, with diminishing returns observed when findings were extrapolated to scenarios with higher prevalence of infection using more sensitive diagnostics. As malaria programmes consider active case detection and the integration of more sensitive diagnostics, these findings may inform strategic and budgetary planning. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12936-018-2361-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5984760 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-59847602018-06-07 Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia Zelman, Brittany W. Baral, Ranju Zarlinda, Iska Coutrier, Farah N. Sanders, Kelly C. Cotter, Chris Herdiana, Herdiana Greenhouse, Bryan Shretta, Rima Gosling, Roly D. Hsiang, Michelle S. Malar J Research BACKGROUND: Reactive case detection (RACD) is an active case finding strategy where households and neighbours of a passively identified case (index case) are screened to identify and treat additional malaria infections with the goal of gathering surveillance information and potentially reducing further transmission. Although it is widely considered a key strategy in low burden settings, little is known about the costs and the cost-effectiveness of different diagnostic methods used for RACD. The aims of this study were to measure the cost of conducting RACD and compare the cost-effectiveness of microscopy to the more sensitive diagnostic method loop-mediated isothermal amplification (LAMP). METHODS: The study was conducted in RACD surveillance sites in five sub-districts in Aceh Besar, Indonesia. The cost inputs and yield of implementing RACD with microscopy and/or LAMP were collected prospectively over a 20 months study period between May 2014 and December 2015. Costs and cost-effectiveness (USD) of the different strategies were examined. The main cost measures were cost per RACD event, per person screened, per population at risk (PAR); defined as total population in each sub-district, and per infection found. The main cost-effectiveness measure was incremental cost-effectiveness ratio (ICER), expressed as cost per malaria infection detected by LAMP versus microscopy. The effects of varying test positivity rate or diagnostic yield on cost per infection identified and ICER were also assessed. RESULTS: Among 1495 household members and neighbours screened in 36 RACD events, two infections were detected by microscopy and confirmed by LAMP, and four infections were missed by microscopy but detected by LAMP. The average total cost of conducting RACD using microscopy and LAMP was $1178 per event with LAMP-specific consumables and personnel being the main cost drivers. The average cost of screening one individual during RACD was $11, with an additional cost of diagnostics at $0.62 and $16 per person for microscopy and LAMP, respectively. As a public health intervention, RACD using both diagnostics cost an average of $0.42 per PAR per year. Comparing RACD using microscopy only versus RACD using LAMP only, the cost per infection found was $8930 and $6915, respectively. To add LAMP as an additional intervention accompanying RACD would cost $9 per individual screened annually in this setting. The ICER was estimated to be $5907 per additional malaria infection detected by LAMP versus microscopy. Cost per infection identified and ICER declined with increasing test positivity rate and increasing diagnostic yield. CONCLUSIONS: This study provides the first estimates on the cost and cost-effectiveness of RACD from a low transmission setting. Costs per individual screened were high, though costs per PAR were low. Compared to microscopy, the use of LAMP in RACD was more costly but more cost-effective for the detection of infections, with diminishing returns observed when findings were extrapolated to scenarios with higher prevalence of infection using more sensitive diagnostics. As malaria programmes consider active case detection and the integration of more sensitive diagnostics, these findings may inform strategic and budgetary planning. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12936-018-2361-y) contains supplementary material, which is available to authorized users. BioMed Central 2018-06-01 /pmc/articles/PMC5984760/ /pubmed/29859081 http://dx.doi.org/10.1186/s12936-018-2361-y Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Zelman, Brittany W. Baral, Ranju Zarlinda, Iska Coutrier, Farah N. Sanders, Kelly C. Cotter, Chris Herdiana, Herdiana Greenhouse, Bryan Shretta, Rima Gosling, Roly D. Hsiang, Michelle S. Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia |
title | Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia |
title_full | Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia |
title_fullStr | Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia |
title_full_unstemmed | Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia |
title_short | Costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of Aceh Province, Indonesia |
title_sort | costs and cost-effectiveness of malaria reactive case detection using loop-mediated isothermal amplification compared to microscopy in the low transmission setting of aceh province, indonesia |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5984760/ https://www.ncbi.nlm.nih.gov/pubmed/29859081 http://dx.doi.org/10.1186/s12936-018-2361-y |
work_keys_str_mv | AT zelmanbrittanyw costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT baralranju costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT zarlindaiska costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT coutrierfarahn costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT sanderskellyc costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT cotterchris costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT herdianaherdiana costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT greenhousebryan costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT shrettarima costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT goslingrolyd costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia AT hsiangmichelles costsandcosteffectivenessofmalariareactivecasedetectionusingloopmediatedisothermalamplificationcomparedtomicroscopyinthelowtransmissionsettingofacehprovinceindonesia |